Site icon NAS Compares

Synology SNV3400 NVMe SSD Hardware Review

Synology SNV3400 NVMe 400GB SSD for NAS Review – Worth Your Cache?

As many of you may no doubt be aware, one of the biggest brands in the world of network-attached storage, Synology, recently took the bold step of entering the world of solid-state drive media. In recent weeks we have seen them bring a selection of SATA and NVMe based SSD to the Prosumer and Enterprise server market. Whilst this brand is one that has been heavily associated with the traditional hardware of the network services over the years, this bold move into the world of providing the SSD media themselves should not come as a huge surprise really. In the last two generations of Synology server hardware, we have seen huge developments in their architecture to incorporate the performance improvements provided by intelligent storage caching. In fact, almost all of their 2020 and 2021 hardware releases support SATA and/or NVMe supported SSD Media in numerous forms from dedicated caching bays and upgrade cards, too fully tailored flash-optimised solutions in their flashstation series. Therefore, one could argue that Synology could have entered this market a great deal sooner. Today I want to look at the new NVMee SSD that Synology has produced for both Diskstations and Rackstation use, as well as to support the latest generation of cache card upgrades in the E10M20-T1 (review here) and M2D20 card (review here). Although there will be obvious comparisons to be drawn between this new SNV3400 SSD and those of the Seagate iIonwolf 510 and Samsung 970 ranges, Synology maintains that their new range of SSD is designed with caching solely in my mind. As it stands, the Synology NAS platform only allows utility of NVMee SSD for caching in the portfolio of NAS systems, with the SATA Synology SSD range (SAT5200) supporting both caching and raw storage utilisation in their traditional NAS and flashstation series. It is with this in mind that when comparing against other SSD, we have to look at three key areas, those of durability, sustained lifetime performance and IOPS.

Synology SNV3400-400G NVMe SSD Review – Quick Conclusion

The Synology NVMe SSD range (3400 and 3500) is a justified move from a brand that knows exactly what it is and does not try to make promises it cannot back up. Right the way back in March when we first learnt about their move into SSD, it was always going to be clear that Synology was making this NVMe SSD for use in their systems for intelligent caching. With an ever-growing focus on the use of intelligent caching in their newer 2020/2021 generation of devices, as well as big improvements in the algorithms used in background caching of DSM 7.0 later this year, Synology are making a bold but understandable move here. The NVMe drive itself seemingly leverages in favour of Read over Write, but that is very much the order of the day for users who have maintained increased storage over time, but a decrease on a performance that comes with the holding of data. The range is in its infancy in terms of the capacity portfolio (with a stronger line up apparent in the 2.5″SATA-5200 SATA series) but I can applaud what Synology is doing here. I just hope it does not come at the expense of support of other drives in their prosumer and SMB ranges in terms of compatibility. Overall – I like it!

SPEED - 7/10
HARDWARE - 8/10
PERFORMANCE - 7/10
PRICE - 6/10
VALUE - 7/10


7.0
PROS
👍🏻One of the Most NAS Optimized NAS SSD Yet
👍🏻High Sustained IOPS performance over its life
👍🏻Clearly designed parallel with NAS
👍🏻High Read MB/s and IOPS
👍🏻Enterprise-class endurance
👍🏻500TBW/0.68 DWPD is respectable
CONS
👎🏻Only for Cache use
👎🏻Less Write optimized
👎🏻Weaker Price vs Capacity Point
👎🏻Range is a little slim at the momen

Synology SNV3400 NVMe SSD Review – Retail

Unsurprisingly, because this is rather an enterprise-class item, the Synology SNV3400 drive is quite vanilla in its packaging design. That isn’t to say that you can’t easily tell it’s a Synology product, it still has that slick charm, but it is still quite bland packaging

The retail box details a few specifications of the drive but does more to highlight that this SSD drive arrives with 5 years of Synology warranty and that this is a flash media drive that has been designed for optimised used in Synology NAS systems.

Once again, this is an important point as you are paying a bit of a premium here for an SSD, compared with the likes of the Seagate Iornwolf and WD Black 750 PCIe SSDs, but with a drive that has a warranty and manufacturer support that is hinged on its utility in a Synology NAS system, it seems to be a more specialist drive and therefore would traditionally command a higher price. In short, if this Drive is not used in a Synology now system, there is every likelihood that your warranty may be invalid as the drive will be used in an unsupported configuration, thereby limiting reliable technical support from the brand.

Synology SNV3400 NVMe SSD Review – Hardware Build Quality

The drive itself, once you see it without the external packaging is unsurprisingly small – as most 2280 length SSD are. It is worth highlighting that the SNV3400 Synology SSD also arrives in a 22110 length version (the SNV-3500-400G), that arrives with power loss protection (PLP) on board to ensure the avoidance of data corruption in write cache in the event of power failure on your NAS system. This longer SSD is far more geared towards high-end enterprise use, particularly given that currently only the two brand new SSD cache upgrade cards from Synology support the 22110 lengths SSD. This SNV3400 SSD at 2280 length is optimised by Synology for use in their NVMe cache enabled desktop and rackmount solutions (DS920+, DS720+, RS1619xs+, DS1621xs+ to name but a few).

The drive itself looks fairly innocuous at first glance, arriving with the standard controller cache and individual and modules that make up a traditional SSD. 

The advertised 400GB of data that is found on the Synology SNV3400 NVMe SSD drive comprises of four individual NAND chips, 2 on either side of the main PCB. Each chip is a Toshiba BiCS3 64-layer TLC NAND cell module, (model TA7AG55A1V) of 125GB capacity each. Although the drive is advertised has 400GB capacity available for caching, this is the result of over-provisioning, which provides additional performance by the drive by utilising excess NAND space as additional file handling room across the processes of the SSD. This is made possible thanks to a tight and well-equipped controller, a Phison PS5012-E12DC.

This controller is an improvement over the PS5007-E7DC controller that came before it, arriving with end-to-end data protection and encryption support. This, used in conjunction with the 3D TLC NAND on those Toshiba cells, provide consistently high read speeds and sustained lifetime IOPS. This controller is also featured on the 21100 NV-3500 drive with it PLP support.

In order to support the controller, maintain those high speeds over PCIe 3×4 and negotiate the over-provisioning, the Synology SNV3400 also arrives with 4GB of DDR4 SDRAM, a single SK Hynix H5AN4G8NBJR module. This is a fairly standard choice, but nice to see they did not cut any corners.

The SNV3400 Synology NVMe SSD drive arrives with a PCIe Gen 3 x 4 NVMe 1.3 interface and it is with that that the drive provides you with the reported 3000MB/s+ sequential Read speed and 550MB/s+ sequential write speeds. Once again, it needs to be highlighted that this Drive is one that has been designed with caching as the primary and only utility of its use and unsurprisingly, the focus is considerably more geared towards Read IOPS and Performance.

Likewise, the NAND and that is featured on either side of of the PCB with its significant degree of over-provisioning results in the reported 500 Terabytes written (TBW) and up to 0.68 Data Writes per Day (DWPD), due in no small part to that higher leverage of the device towards Read for caching.

Likewise, officially reported IOPS performance of this drive arrives at well over 200K read and 40K write randomly (so a similar/higher level of general read IOPS against Intel/Seagate/Samsung – but noticeably lower write in general), however, it is the drives consistent maintaining of these high IOPS within its lifespan that make it such a boon to NAS users looking at improving internal performance via the use of caching alongside their traditionally slower hard drive RAID storage pools.

Synology SNV3400 NVMe SSD Review – Utility

Below are the full official specifications provided to us from Synology on both the SNV3400-400G and SNV-3500-400G SSD for use in cachING:

Hardware Specifications SNV3400-400G



SNV3500-400G



General Capacity 400 GB 400 GB
Form Factor M.2 2280 M.2 22110
Interface NVMe PCIe 3.0 x4 NVMe PCIe 3.0 x4
Performance Sequential Read (128KB, QD32) 3,100 MB/s 3,100 MB/s
Sequential Write (128KB, QD32) 550 MB/s 550 MB/s
Random Read (4KB, QD256) 205,000 IOPS 205,000 IOPS
Random Write (4KB, QD256) 40,000 IOPS 40,000 IOPS
Endurance and Reliability Terabytes Written (TBW)* 500 TB 500 TB
Drive Writes Per Day (DWPD) 0.68 0.68
Mean Time Between Failures (MTBF) 1.8 million hours 1.8 million hours
Uncorrectable Bit Error Rate (UBER) < 1 sector per 1017 bits read < 1 sector per 1017 bits read
Power Loss Protection
Warranty* 5 Years 5 Years
Notes
  • Based on the JESD219A enterprise workload.
  • 5-year limited warranty provides coverage until the end of the warranty period or until the endurance usage of the drive has been reached, whichever comes first.
Power Consumption Supply Voltage 3.3V (± 10%) 3.3V (± 10%)
Active Read (Typ.) 3.2 W 3.7 W
Active Write (Typ.) 3.2 W 3.4 W
Idle 2.0 W 2.0 W
Notes Power consumption may differ according to configurations and platforms. Power consumption may differ according to configurations and platforms.
Temperature Operating Temperature 0°C to 70°C (32°F to 158°F) 0°C to 70°C (32°F to 158°F)
Storage Temperature -40°C to 85°C (-40°F to 185°F) -40°C to 85°C (-40°F to 185°F)
Others Size (Height x Width x Depth) 3.5 mm x 22 mm x 80 mm 4.5 mm x 22 mm x 110 mm
Certification
  • FCC
  • CE
  • BSMI
  • VCCI
  • RCM
  • KC
  • RoHS

Now, there is a lot to unpack there in the official specifications presented to us from Synology. Those who are familiar with the likes of the Seagate Ironwolf 510 and Samsung 970 series will no doubt notice that these drives seemingly have that lower right performance both in terms of IOPS and traditional transmission speed (MB/s etc). Power consumption whilst the drive is in use or idle is quite comparable, as is the general read performance for a PCIe gen 3 x 4 drive. The drive writes per day does seem a pinch lower than those found in the Seagate ironwolf 510 and Intel DCS (some of which hit 1.0 DWPD), as well as both ranges currently having a wider array of capacities available (something that can be put down to time in the market place tbh). However, Synology counter this point by highlighting that the SNV3400 Drive is designed in conjunction with their NAS systems and is therefore completely tailored to utilisation in intelligent caching with their NAS platform. This tailoring extends to those upgrade cards currently in the Synology expansion card lineup that support these SSD, with their respective compatibility lists firmly placing their SSDs as the recommended Drive of choice.

Many users reading this article may already have a Synology NAS system that arrived with NVMe SSD caching bays, such as the brand new DS920+ or the DS720+, and chances are have already purchased/installed Samsung, Seagate or WD SSD in those setups. The really interesting move to ponder is what’s going to happen in Synology NAS in the future. Hypothetically, if Synology highlight that their own tailored SSD will be the only option to get the very best performance out of your NAS system (due to that development parity), should users be concerned? Or should they welcome the direction to get the best option on day 1 (much like the Synology official memory being guaranteed 2666Mhz memory being the de facto choice)? It is still early days with only the SNV3400 and 3500 NVMe SSD arriving in 400GB at this time, but one can imagine this range expanding rapidly and challenging the majority of storage rivals. It is abundantly clear that Synology is looking beyond the commercial sector of storage for comparison and is squarely aiming at data centre class Intel drives to be the preferred choice to switch from. For read caching, I think they make an excellent point.

Important – Software Testing

Currently, Performance testing of the Synology SNV3400 series is happening as we speak and this article will be updated as soon as the results are released on our YouTube channel. This should not take much longer and this article will be updated below according. Below are the testing currently in progress:

Synology NAS – SATA vs NVMe SSD Caching Testshttps://nascompares.com/2020/07/20/synology-nas-sata-vs-nvme-ssd-caching-test

Synology SA3400 Cache Performance Testing – Coming Soon

Synology DS920+/DS720+ Cache Performance Testing – Coming Soon

Synology SNV3400-400G vs Seagate Ironwolf 510 Performance Comparison – Coming Soon

Synology SNV3400-400G vs Samsung 970 PRO Performance Comparison – Coming Soon

Given that the Synology SNV3400-400G drive is one that has been designed with NAS caching in mind, these tests are to be conducted within the Synology NAS system in real-world testing environments that potential users can relate to- stay tuned!

Synology SNV3400-400G NVMe SSD Review – Verdict

Based on hardware and ingenuity alone, I have to give Synology full marks on this. NAS brands are always trying to expand their range towards accessories and ultimately spread into the rest of the network environment(eg memory, NICs, Routers, Switches, etc), but these SSD are an exceptionally mature move from the brand. The Synology NVMe SSD range (3400 and 3500) is a justified move from a brand that knows exactly what it is and does not try to make promises it cannot back up. Right the way back in March when we first learnt about their move into SSD, it was always going to be clear that Synology was making this NVMe SSD for use in their systems for intelligent caching. With an ever-growing focus on the use of intelligent caching in their newer 2020/2021 generation of devices, as well as big improvements in the algorithms used in background caching of DSM 7.0 later this year, Synology are making a bold but understandable move here. The NVMe drive itself seemingly leverages in favour of Read over write, but that is very much the order of the day for users who have maintained increased storage over time, but a decrease on a performance that comes with the holding of data. The range is in its infancy in terms of the capacity portfolio (with a stronger line up apparent in the 2.5″SATA-5200 SATA series) but I can applaud what Synology is doing here. I just hope it does not come at the expense of support of other drives in their prosumer and SMB ranges in terms of compatibility. Overall – I like it!

Synology SNV3400-400G Pros Synology SNV3400-400G Cons
  • One of the Most NAS Optimized NAS SSD Yet
  • High Sustained IOPS performance over its life
  • Clearly designed parallel with NAS
  • High Read MB/s and IOPS
  • Enterprise-class endurance
  • 500TBW/0.68 DWPD is respectable
  • Only for Cache use
  • Less Write optimized
  • Weaker Price vs Capacity Point
  • Range is a little slim at the moment

SNV3400-400G



SNV3500-400G



📧 SUBSCRIBE TO OUR NEWSLETTER 🔔


    🔒 Join Inner Circle

    Get an alert every time something gets added to this specific article!


    Want to follow specific category? 📧 Subscribe

    This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

    Need Advice on Data Storage from an Expert?

    Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry.

      By clicking SEND you accept this Privacy Policy
      Question will be added on Q&A forum. You will receive an email from us when someone replies to it.
      🔒Private Fast Track Message (1-24Hours)

      TRY CHAT Terms and Conditions
      If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
       
      Or support us by using our affiliate links on Amazon UK and Amazon US
          
       
      Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

      ☕ WE LOVE COFFEE ☕

        This description contains links to Amazon. These links will take you to some of the products mentioned in today’s video. As an Amazon Associate, I earn from qualifying purchases

       

      Summary
      Review Date
      Reviewed Item
      Synology SNV-3400 NVMe SSD Hardware Review
      Author Rating
      4
      Exit mobile version