Aoostar WTR Max NAS Review – NAS Perfection?

Aoostar WTR Max NAS Review

The Aoostar WTR Max is a compact, AMD-powered NAS platform aimed at advanced users seeking a balance between high-density storage and compute capabilities. Designed as a substantial upgrade over the earlier WTR Pro model, it offers support for up to eleven total drives, including six SATA bays and five M.2 NVMe slots, all within a small desktop-style chassis. At its core is the AMD Ryzen 7 PRO 8845HS processor, featuring eight cores and sixteen threads, a 5.1 GHz boost clock, and integrated Radeon 780M graphics. The system also supports ECC memory configurations and is cooled by a multi-zone, vapor-chamber-based solution designed to accommodate extended uptime. Unlike many branded NAS systems, the WTR Max does not ship with a proprietary OS, instead encouraging users to install Linux-based distributions such as TrueNAS SCALE or Proxmox. With features like dual 10GbE SFP+ ports, an OCuLink expansion port, and USB4, the unit is aimed at homelab operators, multimedia professionals, and technically proficient users looking for a customizable and high-performance alternative to locked-down NAS appliances.

The Aoostar WTR MAX Nas is available from the following places:

  • Aoostar WTR Max NAS on (Check Amazon) – HERE
  • Aoostar R1 N150 2-Bay NAS $179 – HERE
  • Aoostar R7 4-Bay NAS $419 – HERE
  • Aoostar R7 2-Bay 5825U NAS $399 – HERE
  • Aoostar Oculink 800W ePCIe Docking Station $169 – HERE
  • Aoostar GEN12 Gen4 PC $374 on AliExpress – HERE

Aoostar WTR Max NAS Review – Quick Conclusion

The Aoostar WTR Max stands out as a rare blend of high storage density, advanced connectivity, and raw compute performance in a compact NAS form factor, making it well-suited for experienced users seeking a versatile, self-managed platform. With support for up to 11 drives—six SATA and five NVMe Gen 4—paired with an enterprise-grade Ryzen 7 PRO 8845HS CPU and ECC memory compatibility, the system offers workstation-class capabilities for storage-heavy workflows, including virtualization, multimedia processing, and hybrid file serving. Dual 10GbE SFP+ and dual 2.5GbE ports provide ample bandwidth for multi-user access or isolated subnet roles, while the OCuLink interface enables high-speed external expansion, compensating for the absence of a traditional PCIe slot. Additional benefits like a fully customizable LCD status display, low fan noise, and consistently low thermals under load reinforce the system’s value in 24/7 deployments.

However, the WTR Max does present some caveats—namely, internal NVMe cross-performance appears constrained by shared bandwidth, and the lack of an internal PCIe slot could be limiting for users requiring more conventional upgrade paths. The LCD panel’s configuration software also proved cumbersome, raising security flags and requiring manual IP client setup, which may deter less technically inclined users. Lastly, the use of an external 280W PSU—while effective—won’t appeal to those expecting internal power integration in a workstation-style chassis. Nonetheless, for users who value full control over their NAS stack and want to avoid restrictive ecosystems, the WTR Max delivers a rare combination of hardware freedom and scalability that few turnkey systems offer in this price and size category.

BUILD QUALITY - 10/10
HARDWARE - 10/10
PERFORMANCE - 8/10
PRICE - 9/10
VALUE - 9/10


9.2
PROS
👍🏻High Storage Density in Compact Form
👍🏻Supports up to 11 drives (6x SATA + 5x NVMe) in a desktop-sized chassis, ideal for users with large-scale storage needs but limited physical space.
👍🏻
👍🏻Enterprise-Class CPU with ECC Support
👍🏻AMD Ryzen 7 PRO 8845HS offers 8C/16T performance, ECC memory support, and integrated RDNA 3 graphics—rare at this price and size.
👍🏻
👍🏻Dual 10GbE SFP+ and Dual 2.5GbE Networking
👍🏻Provides flexible, high-throughput networking for content creators, virtual environments, or advanced home labs.
👍🏻
👍🏻Strong Virtualization and Transcoding Performance
👍🏻Smooth Proxmox VM hosting and real-time Plex 4K/8K transcoding using Radeon 780M hardware acceleration.
👍🏻
👍🏻OCuLink PCIe Expansion Port
👍🏻Enables high-speed external storage or GPU support without sacrificing internal NVMe bandwidth.
👍🏻
👍🏻Customizable LCD Monitoring Panel
👍🏻Real-time display of system metrics (CPU, RAM, network, storage) with theme options, useful for headless setups.
👍🏻
👍🏻Robust Cooling System with Vapor Chamber
👍🏻Glacier Pro 1.0 design keeps thermals in check across four fans and distinct airflow zones; low fan noise even under load.
👍🏻
👍🏻Open Software Ecosystem
👍🏻No proprietary OS or restrictions; supports TrueNAS, Unraid, Proxmox, or Linux-based setups for full admin control.
CONS
👎🏻Limited Internal NVMe Cross-Throughput
👎🏻Inter-M.2 transfer speeds are capped (~500–600 MB/s), possibly due to shared chipset lanes or controller design.
👎🏻
👎🏻No Internal PCIe Slot
👎🏻Expansion is limited to OCuLink; users needing traditional PCIe cards (e.g., GPUs or HBAs) may find this restrictive.
👎🏻
👎🏻LCD Panel Software Can Be Problematic
👎🏻Configuration software raised browser security flags and requires static IP client setup, making it less accessible.
👎🏻
👎🏻External Power Brick Only
👎🏻280W external PSU is functional but not ideal for rackmount or integrated enclosures; some users may prefer internal ATX power.



DEAL WATCH Is It On Offer Right Now?

Asustor AS1102TL Drivestor 2 Lite 2 Bay NAS Quad-Core 1.7GHz CPU 1GbE Port 1GB D Amazon usa USA 33.08 OFF (WAS 244) [LINK]
Asustor Flashstor 6 FS6706T - 6 Bay All-SSD NAS Storage, Quad Core 2.0GHz, Six M Amazon usa USA 19 OFF (WAS 449) [LINK]
Asustor Lockerstor 2 Gen2 AS6702T - 2 Bay NAS, Quad-Core 2.0 GHz CPU, 4X M.2 Amazon usa USA 52.89 OFF (WAS 521) [LINK]
Synology 6 Bay 2.5" NAS DS620slim (Diskless) & RAM DDR3L-1866 SO-DIMM 4GB (D3NS1 Amazon usa USA 7.06 OFF (WAS 546) [LINK]
QNAP TS-433 NAS Tower Ethernet LAN Cortex-A55 Amazon usa USA 34.27 OFF (WAS 568) [LINK]

These Offers are Checked Daily

Aoostar WTR Max NAS Review – Design & Storage

Physically, the Aoostar WTR Max is housed in a full-metal anodized aluminum alloy chassis that balances structural rigidity with passive thermal conductivity. The exterior finish is minimal but functional, offering side ventilation cutouts and removable access panels secured with thumb screws. Despite its relatively compact form factor for an 11-bay NAS system, the unit features six front-facing drive trays, each supporting 3.5-inch or 2.5-inch SATA drives.

These trays use a click-and-load design—no tools required—which simplifies drive installation and replacement. During prolonged hands-on testing, the trays handled both consumer-grade HDDs and Synology enterprise-class drives without mechanical or airflow restricting conflict, making compatibility a non-issue for most users. The structural alignment of the trays channels cool air from bottom-front intake vents across the drives and out the rear via dual exhaust fans, ensuring thermal separation between the storage and compute areas even during continuous multi-drive operation.

Beyond the six SATA bays, the WTR Max incorporates five PCIe Gen 4 M.2 NVMe 2280 slots, enabling dense solid-state storage directly on the mainboard and modular trays. Four of these are mounted within a vertically oriented, removable tray situated at the end of the main drive bay stack. This spring-loaded tray resembles modular SSD carriers found in more expensive enterprise-grade systems and allows for rapid SSD swaps or upgrades. Also, each of the 4 m.2 slots on this 7th bay still had room for a standard m.2 heatsink too!

The fifth M.2 slot is positioned horizontally on the motherboard base, adjacent to the DDR5 SODIMM slots and covered by an active cooling fan. Of the five slots, two run at PCIe Gen 4 x1 and two at Gen 4 x2, with the fifth—on the motherboard—also supporting Gen 4 x2. Testing confirmed sufficient physical clearance for installing large NVMe heatsinks on all slots, and SSDs remained within optimal temperature ranges even under sustained I/O workloads.

Internally, the SATA subsystem is controlled via an ASMedia ASM1166 controller operating over a PCIe Gen 3 x2 interface, capable of delivering up to 2GB/s total throughput across all six bays. This bandwidth is sufficient for both HDD arrays and SATA SSDs, and is particularly well-suited for software-managed RAID configurations in Linux-based OSes such as Unraid, TrueNAS, or OpenMediaVault.

During testing, mixed workloads involving simultaneous read/write access across multiple HDDs and SSDs were handled without observable I/O queueing or temperature spikes. Drive temperatures averaged between 38°C and 45°C during a 24-hour benchmark run, with airflow guided from the bottom intake and over the storage chamber by the dual rear exhaust fans—ensuring consistent cooling across all drive positions, even during power-on-demand cycles triggered by scheduled remote backups.

The design of the seventh modular tray holding four of the M.2 NVMe slots is particularly noteworthy. Rather than opting for fixed PCB slots that require full disassembly for access, Aoostar implemented a removable cartridge system similar to those found in rack-mounted server appliances. This tray locks in place without screws, and its spring-loaded retention system provides firm pressure on runners inside once installed beneath the SSDs. This is a very smooth ejection and injection system for this extra bay!

Air is directed over this tray by the two rear-mounted fans, with additional airflow routed from below via the central fan on the base of the chassis. In testing, even under back-to-back file transfer tests using Unraid’s file mover and native benchmark tools, SSD temperatures rarely exceeded 48°C. The inclusion of independent airflow for the NVMe zone demonstrates thoughtful separation of thermal domains within the small enclosure, reducing the chance of thermal throttling during concurrent high-speed transfers.

The drive configuration options available on the WTR Max support a flexible tiered storage approach—useful in both home lab and small office environments. For instance, the six SATA bays can accommodate high-capacity HDDs (up to 24TB each), suitable for media archiving or surveillance video, while the M.2 slots can be allocated for fast read/write operations, app deployments, or SSD caching layers. Real-world bandwidth testing of these drives showed the Gen 4 x1 slots achieving around 1.6GB/s read speeds and the Gen 4 x2 slots reaching 2.9GB/s, aligning with their advertised capabilities.

Although inter-M.2 transfer rates peaked at 500–600MB/s—suggesting internal lane bottlenecks (i.e sending data between each of the 4 m.2 on this 7th bay) —the system still provided consistent and predictable performance. This architecture supports phased upgrades, allowing users to populate the system gradually based on workload growth without disassembling core components or compromising airflow design.

Aoostar WTR Max NAS Review – Internal Hardware

At the core of the Aoostar WTR Max lies the AMD Ryzen 7 PRO 8845HS processor, an 8-core, 16-thread chip built on the Zen 4 architecture using TSMC’s 4nm process. This processor, operating with a base clock of 3.8 GHz and boosting up to 5.1 GHz, is typically found in business-class notebooks and embedded workstations. Its inclusion in a NAS-oriented device marks a shift toward more versatile and compute-intensive roles for compact systems.

It also supports configurable TDPs of 35W, 45W, and up to 54W, depending on cooling and power profiles, allowing the system to balance efficiency and performance based on workload. Integrated Radeon 780M graphics, based on the RDNA 3 architecture with 12 compute units, deliver hardware-accelerated AV1, HEVC, and H.264 encoding and decoding. During stress testing, the WTR Max handled simultaneous 4K and 8K video transcoding jobs in Plex with CPU usage remaining below 50%, thanks in part to hardware transcoding support via the integrated GPU. This level of onboard media processing is rare in NAS systems, even among high-end appliances.

In terms of memory support, the device offers two DDR5-5600 SODIMM slots, allowing for up to 128GB of total RAM. More notably, the platform supports ECC (Error Correcting Code) memory when paired with compatible modules—an enterprise-grade feature typically limited to workstation-class motherboards. While the review unit shipped with 32GB of standard DDR5 memory, ECC compatibility was verified via low-level SSH diagnostics and BIOS interrogation, confirming that ECC is fully operational at the hardware level.

During tests involving Proxmox, six Windows 10 virtual machines and two Ubuntu VMs ran concurrently, with each VM allocated 2 to 4 vCPUs and 2 to 4 GB of memory. No instability or memory-related errors were recorded, and the system maintained consistent performance under variable load conditions. The side-by-side DIMM slot arrangement benefits from direct airflow via the base intake fan, which also provides passive cooling to the adjacent motherboard-mounted NVMe SSD slot.

Thermal performance is managed by Aoostar’s proprietary Glacier Pro 1.0 cooling solution, which integrates a vapor chamber heat spreader on the CPU and a multi-fan chassis ventilation layout. The vapor chamber, paired with a low-profile active cooler, rapidly disperses thermal load from the CPU across the copper plate, minimizing heat concentration during burst operations. The system features four fans: one at the base pulling intake air upward across the motherboard, two rear-mounted exhaust fans, and one CPU-mounted blower. Each thermal zone—CPU, NVMe tray, and SATA chamber—benefits from isolated airflow paths.

During a 24-hour access schedule test simulating hourly user activity, CPU temperatures ranged from 35°C at idle to 49°C under peak load with 10GbE transfers and active virtual machines. Even when pushing the system with forced maximum fan speed and high CPU utilization, recorded noise output remained within 43–44 dBA, with a base idle level of 35–38 dBA.

For a system with this many internal components—including six HDDs, five SSDs, and four fans—the acoustic footprint was relatively modest, especially considering the close thermal spacing and the volume of air moved internally.

Component Specification
CPU AMD Ryzen 7 PRO 8845HS (8C/16T, 3.8–5.1 GHz, Zen 4, 4nm, 35–54W configurable TDP)
Integrated Graphics Radeon 780M (RDNA 3, 12 CUs, up to 2.7 GHz, AV1/HEVC/H.264 support, HW transcoding)
Memory 2x DDR5-5600 SODIMM slots, up to 128GB total, ECC support (validated)
Cooling System Glacier Pro 1.0: Vapor chamber, 4 fans (rear x2, base intake x1, CPU x1)
Thermal Range 35°C idle, 47–49°C under load; 43–44 dBA max, 35–38 dBA typical fan noise
Power Supply 280W external PSU; power draw tested: 18W (idle, no drives), 73–89W peak loaded

Aoostar WTR Max NAS Review – Ports and Connections

The Aoostar WTR Max provides an unusually extensive networking suite for a system of its size, offering both high-speed and multi-interface flexibility. The two Intel X710-based 10GbE SFP+ ports support full duplex operation, making them ideal for NAS-to-NAS replication, large-scale Plex libraries, or multi-user editing environments via shared storage. These ports were tested using iPerf3 and real-world file transfers between NVMe pools and a 10GbE-connected workstation, showing stable saturation of the interface without fluctuation. As these are SFP, users are going to have to factor in tranceivers or DAC cables with tranceivers included), but as these two ports are so close together, using SFP-to-RJ45 adapters is going to be a question of temperature monitoring.

In addition, two 2.5GbE RJ45 Ethernet ports are available, which can be used in a variety of configurations including link aggregation, VLAN assignment, or as out-of-band management interfaces. The coexistence of fiber-based and copper-based networking within the same unit opens deployment to both consumer and prosumer setups. During tests, the user assigned one 2.5GbE interface to general network access while isolating 10GbE traffic to storage-only communication, demonstrating flexibility in segmentation.

USB and high-speed peripheral connectivity is equally comprehensive. The front of the device houses a USB 4.0 port, which supports Thunderbolt-like bandwidths (up to 40Gbps), display passthrough, and power delivery—making it suitable for external drive arrays, video output, or even docking stations. Next to it, a standard USB-C port and USB 3.2 Gen 1 Type-A port provide backward compatibility for legacy peripherals. On the rear, two USB 3.2 Gen 2 Type-A ports were used during testing for attaching external backup drives and a keyboard/mouse combo during Proxmox installation.

All ports were recognized without driver conflicts in both Linux and Windows-based environments. The device also includes a microSD slot on the front, which proved useful for OS boot media, diagnostics, or fast access to camera footage. In the test scenario, the slot was used to quickly transfer small image files to the Plex container, and performance aligned with UHS-I speeds. This wide array of port options allows users to operate the WTR Max in both network-only and semi-local scenarios, such as multimedia servers with attached peripherals.

A standout feature in this device’s connectivity suite is the OCuLink port, which provides a PCIe 4.0 x4 interface for external expansion. This port was successfully used to attach an NVMe enclosure using a M.2-to-OCuLink bridge, allowing high-speed external storage without interfering with internal NVMe bandwidth allocation. Although hot-swapping is not supported, the stability and speed of the external connection matched internal Gen 4 performance. This is a notable advantage for users who require flexible expansion or temporary scratch drives without opening the chassis.

In the review scenario, the OCuLink port was also noted as a potential bridge to add GPU acceleration, external PCIe networking, or SAS HBA expansion—though Aoostar provides no internal PCIe slot, making the external route the only PCIe-level expansion path. This design choice reflects a compromise between size and flexibility, prioritizing I/O density over internal modularity. That said, oculink is not for everyone! And additional adapters such as eGPU are going to be needed if you are looking at upgrading network performance and are going to drastically increase your spend compared with traditional PCIe upgrades!

For users requiring local video output or dual-purpose NAS/workstation functionality, the WTR Max includes a rear-mounted HDMI 2.1 port supporting up to 4K at 240Hz, in addition to display-capable USB4 and USB-C ports depending on OS support. In practice, during Proxmox and Unraid testing, HDMI video output was used for initial OS installation and local monitoring. This can be useful for deployments involving virtual desktops, docker-based dashboards, or kiosk-style media servers. Audio is handled through a 3.5mm output jack, functional in Linux environments once the relevant drivers are installed.

On the front of the unit, Aoostar has implemented a customizable LCD display, accessible via proprietary software. While the software itself presented download warnings in some browsers and required IP-specific client setup, once configured it displayed real-time statistics such as CPU temperature, RAM usage, network throughput, and storage status. Multiple themes are included (e.g., cyberpunk, minimal, and stat-based), and the panel can be toggled on/off depending on user preference. Although not essential, the display provides a level of visual diagnostics uncommon in this product tier. This was the only area of the review that I found inconsistent and messy! Tapping into this specific internal IP, as well as using an application that was being flagged constantly by my windows system, AND trying to do this with the NAS behind 3 layers of network (my own setup) was not smooth. Additionally, although the LCD panel templates were useful, they did seem to contain a lot of copyright imagery (Cyberpunk, Pacman, etc) and I would question the comiance from their source! Hopefully this LCD control and customization gets smoothed out soon, as well as the app finishes it’s windows certification at least.

Networking 2x 10GbE SFP+ (Intel X710), 2x 2.5GbE RJ45 (aggregatable, isolated, or bridged)
USB Interfaces 2x USB 3.2 Gen 2 Type-A (rear), 1x USB 3.2 Gen 1 Type-A (front), 1x USB4 (front), 1x USB Type-C
Expansion Ports 1x OCuLink (PCIe 4.0 x4, external NVMe or GPU support, not hot-swappable), 1x MicroSD slot
Video Output 1x HDMI 2.1 (up to 4K @ 240Hz), USB4 and USB-C video-out supported by OS
Audio 1x 3.5mm headphone jack (Linux compatible with correct drivers)
Front Panel Display LCD screen with real-time stats, theme selection, IP-based configuration client

Aoostar WTR Max NAS Review – Performance and Testing

The Aoostar WTR Max underwent a series of tests spanning disk benchmarks, live file transfers, mixed storage scenarios, and sustained uptime evaluations to assess its practical capabilities across NAS, virtualization, and media applications. In synthetic disk tests, the PCIe Gen 4 x1 NVMe slots delivered consistent read speeds of ~1.6 GB/s and write speeds just under 1.5 GB/s, while the Gen 4 x2 slots achieved peak sequential performance of ~2.9 GB/s read and ~2.8 GB/s write, aligning well with expected lane bandwidth.

These figures were observed under both Windows and Linux environments, using CrystalDiskMark and ATTO. However, during internal NVMe-to-NVMe copy operations—across both like-for-like (x2 to x2) and mixed (x1 to x2) configurations—transfer rates plateaued around 550 MB/s. This suggests the presence of a shared bus or controller limitation not disclosed by the vendor, though the speeds remained consistent with no unexpected drops. Importantly, SSD temperatures stayed within thermal spec, typically ranging from 38°C to 45°C under sustained use, aided by both airflow and full-sized heatsink compatibility.

For networking performance, the system’s dual 10GbE SFP+ interfaces were subjected to direct iPerf3 stress tests and real-world copy operations involving both SATA and NVMe-based storage arrays. Both ports reached saturation—approximately 9.5 Gbps—under bidirectional iPerf3 tests with no jitter or packet loss, even during simultaneous Plex streaming and background drive activity. SMB transfers of large 4K video files to a remote 10GbE-equipped workstation routinely exceeded 1.1 GB/s sustained, indicating that the system’s storage and network layers were well-aligned.

The two 2.5GbE RJ45 ports were also tested as either bridged interfaces in Proxmox or as failover backups, with VLAN tagging and static routing configured via systemd-networkd. No conflicts or bottlenecks were detected, even when running scheduled backups over one NIC while media was streamed through another. This concurrent multi-interface performance demonstrates how the WTR Max can comfortably handle mixed workloads across different network zones or physical infrastructure types.

Power consumption testing covered four defined usage scenarios to gauge idle and active draw under realistic conditions. With no drives installed and only the OS running from the onboard NVMe SSD, the system idled at just 18W, largely due to the mobile efficiency of the Ryzen 7 PRO 8845HS and lack of mechanical components. Installing five M.2 SSDs increased baseline consumption to around 24W. With all six SATA bays populated using 8TB–18TB HDDs alongside five SSDs, power draw under passive load settled at approximately 52–53W. During full-load testing—consisting of active read/write operations on all drives, high-bitrate Plex streaming, dual 10GbE saturation, and 40–50% CPU usage—system draw fluctuated between 73W and 89W. These numbers fall within reasonable bounds for a 12-core-equivalent server system with 11 drives, four fans, and integrated GPU transcode activity. The external 280W power supply never exhibited instability and has sufficient overhead for adding expansion enclosures or OCuLink-powered peripherals like an eGPU or NVMe array.

Application testing further underscored the platform’s ability to support a hybrid range of tasks. In multimedia scenarios, Plex Media Server was configured to transcode a 400 Mbps 4K file, a 200 Mbps 4K stream, and two simultaneous 80 Mbps 8K/4K sources—all while maintaining fluid playback and system responsiveness. The integrated Radeon 780M handled these loads using hardware transcoding (VAAPI), keeping CPU load under 50% throughout. In a separate deployment, Proxmox was used to launch six Windows 10 VMs and two Ubuntu LTS servers, with each VM receiving 2–4 vCPUs and 2–4 GB of memory. All machines remained responsive under simultaneous browser, terminal, and light media workloads. Importantly, the LCD panel continued to provide accurate telemetry even during these test periods, showing live RAM, CPU, and storage activity. No kernel-level instability, drive timeouts, or system hangs were observed during multi-day operation. This level of consistency positions the WTR Max as a capable platform not just for data storage, but also for virtualized desktop hosting, container orchestration, or edge-processing scenarios where performance and uptime are equally critical.

SSD Benchmark Gen 4 x1: ~1.6 GB/s read / ~1.5 GB/s write; Gen 4 x2: ~2.9 GB/s read / ~2.8 GB/s write
Internal Transfers M.2 to M.2 mixed or matched: ~500–600 MB/s (sustained), likely limited by shared lanes
10GbE Throughput Full saturation on both SFP+ ports: ~9.5 Gbps, sustained 1.1+ GB/s file transfer
Power Consumption 18W (idle, no drives), 24W (SSDs only), 52–53W (fully populated idle), 73–89W (peak load)
Transcoding (Plex) 4 concurrent streams (4K/8K), HW transcoding (Radeon 780M), <50% CPU load, stable output
Virtualization 6x Win10 (4GB RAM/2 vCPUs), 2x Ubuntu (2GB RAM/2 vCPUs); responsive multi-session use
Thermal Behavior 35–40°C idle, 47–49°C under stress, SSDs remained below 48°C, no thermal throttling

Aoostar WTR Max NAS Review – Conclusion & Verdict

The Aoostar WTR Max presents a rare combination of compact form factor, enterprise-aligned specifications, and hardware flexibility that places it apart from both consumer-grade NAS appliances and DIY server builds. With support for eleven total storage devices—including six SATA bays and five Gen 4 NVMe slots—plus ECC memory compatibility and dual 10GbE networking, it delivers a feature set typically reserved for much larger or more expensive systems. Its Ryzen 7 PRO 8845HS processor offers sufficient compute power for a wide range of workloads, from virtualization and containerization to media encoding and storage routing. Real-world performance during testing confirmed that the WTR Max could handle multiple simultaneous high-bitrate video transcodes, multi-VM operation, and 10GbE network saturation, all while maintaining consistent thermals and manageable power usage. While internal bandwidth sharing across NVMe slots may limit some inter-disk operations, this did not impact external throughput or sustained application performance.

For users seeking a flexible platform to host their own NAS operating system—whether TrueNAS, Unraid, or Proxmox—the WTR Max provides considerable value, assuming a willingness to configure and manage the software stack independently. It does not include a proprietary OS or vendor-specific ecosystem, which may be a drawback for those expecting turnkey functionality but a strength for users looking to avoid software licensing limitations or drive compatibility locks. The LCD front panel, OCuLink expandability, and support for up to 128GB of DDR5 RAM further extend its potential across use cases that include hybrid desktop/NAS roles, edge compute appliances, or lab environments. While priced above entry-level NAS systems, its performance, thermal behavior, and hardware access align more closely with workstation-class systems. A future comparison with devices like the Minisforum N5 Pro will offer more context, but based on current observations, the Aoostar WTR Max establishes itself as a serious option for self-hosters demanding both storage density and processing headroom.

The Aoostar WTR MAX Nas is available from the following places:

  • Aoostar WTR Max NAS on (Check Amazon) – HERE
  • Aoostar R1 N150 2-Bay NAS $179 – HERE
  • Aoostar R7 4-Bay NAS $419 – HERE
  • Aoostar R7 2-Bay 5825U NAS $399 – HERE
  • Aoostar Oculink 800W ePCIe Docking Station $169 – HERE
  • Aoostar GEN12 Gen4 PC $374 on AliExpress – HERE
Aoostar WTR Max NAS Pros Aoostar WTR Max NAS Cons
  • High Storage Density in Compact Form
    Supports up to 11 drives (6x SATA + 5x NVMe) in a desktop-sized chassis, ideal for users with large-scale storage needs but limited physical space.

  • Enterprise-Class CPU with ECC Support
    AMD Ryzen 7 PRO 8845HS offers 8C/16T performance, ECC memory support, and integrated RDNA 3 graphics—rare at this price and size.

  • Dual 10GbE SFP+ and Dual 2.5GbE Networking
    Provides flexible, high-throughput networking for content creators, virtual environments, or advanced home labs.

  • Strong Virtualization and Transcoding Performance
    Smooth Proxmox VM hosting and real-time Plex 4K/8K transcoding using Radeon 780M hardware acceleration.

  • OCuLink PCIe Expansion Port
    Enables high-speed external storage or GPU support without sacrificing internal NVMe bandwidth.

  • Customizable LCD Monitoring Panel
    Real-time display of system metrics (CPU, RAM, network, storage) with theme options, useful for headless setups.

  • Robust Cooling System with Vapor Chamber
    Glacier Pro 1.0 design keeps thermals in check across four fans and distinct airflow zones; low fan noise even under load.

  • Open Software Ecosystem
    No proprietary OS or restrictions; supports TrueNAS, Unraid, Proxmox, or Linux-based setups for full admin control.

  • Limited Internal NVMe Cross-Throughput
    Inter-M.2 transfer speeds are capped (~500–600 MB/s), possibly due to shared chipset lanes or controller design.

  • No Internal PCIe Slot
    Expansion is limited to OCuLink; users needing traditional PCIe cards (e.g., GPUs or HBAs) may find this restrictive.

  • LCD Panel Software Can Be Problematic
    Configuration software raised browser security flags and requires static IP client setup, making it less accessible.

  • External Power Brick Only
    280W external PSU is functional but not ideal for rackmount or integrated enclosures; some users may prefer internal ATX power.

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔


    🔒 Join Inner Circle

    Get an alert every time something gets added to this specific article!


    Want to follow specific category? 📧 Subscribe

    This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

    Need Advice on Data Storage from an Expert?

    Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry.

      By clicking SEND you accept this Privacy Policy
      Question will be added on Q&A forum. You will receive an email from us when someone replies to it.
      🔒Private Fast Track Message (1-24Hours)

      TRY CHAT Terms and Conditions
      If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
       
      Or support us by using our affiliate links on Amazon UK and Amazon US
          
       
      Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

      ☕ WE LOVE COFFEE ☕

       

       

      locked content ko-fi subscribe
      Summary
      Review Date
      Reviewed Item
      Aoostar WTR Max NAS Review
      Author Rating
      51star1star1star1star1star

      DISCUSS with others your opinion about this subject.
      ASK questions to NAS community
      SHARE more details what you have found on this subject
      CONTRIBUTE with your own article or review. Click HERE
      IMPROVE this niche ecosystem, let us know what to change/fix on this site
      EARN KO-FI Share your knowledge with others and get paid for it! Click HERE

      ASK YOUR QUESTIONS HERE!

      3 thoughts on “Aoostar WTR Max NAS Review – NAS Perfection?

      1. Thanks for this very informative review. I’d already pre-ordered one of these, and your review gives me confidence that it was a good decision to choose it. One possible error I noticed in the review: you indicate that the USB4 port is on the front. As far as I can tell from the Aoostar specs and the images you’ve shown, the USB4 port is on the back of the device. I’m looking forward to watching the accompanying video when it becomes generally available.

      2. Do you know what size heatsink will fit in there? Aoostar said there would not be enough clearance so already ordered some ssds without a heat sink 🙁

      3. Thanks for your great review! I’d be interested in its audio latency, would you mind checking (with LatencyMon)?